This leaderbord shows the ranking for Model-based 6D detection of unseen objects on YCB-V. The reported time is the average time to generate predictions for all objects in a single image (averaged over the datasets).
Date (UTC) | Submission | Views | Test image | AP | APMSSD | APMSPD | Time (s) | |
---|---|---|---|---|---|---|---|---|
1 | 2024-11-29 | FreeZeV2.1 | single | RGB-D | 0.905 | 0.930 | 0.879 | 50.103 |
2 | 2024-11-24 | FRTPose.v1 (MUSE) | single | RGB-D | 0.883 | 0.914 | 0.851 | 15.003 |
3 | 2024-09-20 | FreeZeV2 (SAM6D) (SAR threshold = -1) | single | RGB-D | 0.869 | 0.894 | 0.844 | 59.652 |
4 | 2024-12-09 | FRTPose.v1 (SAM6D-FastSAM, NIDS, CNOS and MUSE) | single | RGB-D | 0.869 | 0.900 | 0.838 | 28.168 |
5 | 2024-11-02 | FRTPose.v1 (SAM6D-FastSAM) | single | RGB-D | 0.864 | 0.894 | 0.833 | 26.955 |
6 | 2024-11-24 | FRTPose.v1 (SAM6D-FastSAM) | single | RGB-D | 0.863 | 0.893 | 0.832 | 26.448 |
7 | 2024-11-24 | FRTPose.v1 (Default Detections) | single | RGB-D | 0.861 | 0.891 | 0.830 | 28.902 |
8 | 2024-11-02 | FRTPose.v1 (Default Detections) | single | RGB-D | 0.861 | 0.891 | 0.830 | 29.481 |
9 | 2024-09-26 | FreeZeV2 (SAM6D, Coarse-to-Fine) (0.45 to 0.25) | single | RGB-D | 0.858 | 0.881 | 0.834 | 14.991 |
10 | 2024-09-17 | FreeZeV2 (SAM6D) | single | RGB-D | 0.835 | 0.859 | 0.812 | 8.779 |
11 | 2024-09-26 | FreeZeV2 (SAM6D, Coarse-to-Fine) | single | RGB-D | 0.832 | 0.854 | 0.810 | 14.885 |
12 | 2024-11-28 | Co-op (F3DT2D, 5 Hypo, RGBD) (Intel(R) Core(TM) i9-14900K, RTX4090) | single | RGB-D | 0.812 | 0.843 | 0.782 | 9.261 |
13 | 2024-11-28 | Co-op (F3DT2D, Coarse, RGBD) (sel rescoring, Intel(R) Core(TM) i9-14900K, RTX4090) | single | RGB-D | 0.808 | 0.841 | 0.776 | 0.619 |
14 | 2024-11-28 | Co-op (CNOS, Coarse, RGBD) (BOP 2024) | single | RGB-D | 0.782 | 0.813 | 0.751 | 1.771 |
15 | 2024-11-28 | Co-op (CNOS, 1 Hypo, RGBD) (BOP 2024) | single | RGB-D | 0.766 | 0.795 | 0.737 | 6.111 |
16 | 2024-11-29 | Co-op (CNOS, 5 Hypo, RGBD) (BOP 2024) | single | RGB-D | 0.766 | 0.794 | 0.737 | 14.699 |
17 | 2024-09-13 | GigaPose+GenFlow (RGBD) (threshold = 0.0) | Single | RGB-D | 0.682 | 0.713 | 0.651 | 3.714 |
18 | 2024-11-28 | Co-op (F3DT2D, 5 Hypo) (Intel(R) Core(TM) i9-14900K, RTX4090) | single | RGB | 0.626 | 0.518 | 0.734 | 6.313 |
19 | 2024-09-20 | GigaPose+GenFlow (5 hypothesis) | single | RGB | 0.607 | 0.508 | 0.707 | 12.131 |
20 | 2024-11-28 | Co-op (CNOS, 1 Hypo) (BOP 2024) | single | RGB | 0.592 | 0.491 | 0.692 | 5.210 |
21 | 2024-11-29 | Co-op (CNOS, 5 Hypo) (BOP 2024) | single | RGB | 0.591 | 0.490 | 0.692 | 11.986 |
22 | 2024-11-28 | Co-op (CNOS, Coarse) (BOP 2024) | single | RGB | 0.576 | 0.462 | 0.691 | 1.785 |
23 | 2024-09-27 | GigaPose + GenFlow (threshold = 0.6) | Single | RGB | 0.546 | 0.464 | 0.629 | 3.782 |
24 | 2024-09-18 | GigaPose+GenFlow+kabsch (5 hypothesis) | single | RGB-D | 0.524 | 0.552 | 0.496 | 13.314 |
25 | 2024-09-18 | GigaPose-CVPR24 | single | RGB | 0.125 | 0.046 | 0.204 | 0.573 |
Tip: Hover over the numbers to see more decimal places.