Submission name | FFB6D-lmo-synthetic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Submission time (UTC) | Dec. 3, 2021, 3:47 p.m. | ||||||||||
User | fegorsch | ||||||||||
Task | Pose estimation (BOP 2019-2022) | ||||||||||
Dataset | LM-O | ||||||||||
Training model type | Default | ||||||||||
Training image type | Synthetic (provided) | ||||||||||
Description | Trained for 316600 iterations at 0.5 seconds per iteration, about 7 days. | ||||||||||
Evaluation scores |
|
User | fegorsch |
---|---|
Publication | Yisheng He et al.: FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021 |
Implementation | https://github.com/ethnhe/FFB6D |
Training image modalities | RGB-D |
Test image modalities | RGB-D |
Description | FFB6D trained with purely synthetic BlenderProc-images. |
Computer specifications | AMD Ryzen 5 3600X 6-Core Processor, NVIDIA TITAN RTX |