| Submission name | FFB6D-lm-synthetic | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Submission time (UTC) | Dec. 3, 2021, 3:45 p.m. | ||||||||||
| User | fegorsch | ||||||||||
| Task | Model-based 6D localization of seen objects | ||||||||||
| Dataset | LM | ||||||||||
| Training model type | Default | ||||||||||
| Training image type | Synthetic (provided) | ||||||||||
| Description | Trained for 316600 iterations at 0.5 seconds per iteration, about 7 days. | ||||||||||
| Evaluation scores |
|
| User | fegorsch |
|---|---|
| Publication | Yisheng He et al.: FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021 |
| Implementation | https://github.com/ethnhe/FFB6D |
| Training image modalities | RGB-D |
| Test image modalities | RGB-D |
| Description | FFB6D trained with purely synthetic BlenderProc-images. |
| Computer specifications | AMD Ryzen 5 3600X 6-Core Processor, NVIDIA TITAN RTX |