Submission name | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Submission time (UTC) | Sept. 26, 2024, 2:41 a.m. | ||||||||||
User | jysir | ||||||||||
Task | Model-based 6D localization of seen objects | ||||||||||
Dataset | LM-O | ||||||||||
Description | |||||||||||
Evaluation scores |
|
User | jysir |
---|---|
Publication | |
Implementation | |
Training image modalities | RGB-D |
Test image modalities | RGB-D |
Description | We trained our model using PBR data, employing YOLOX for object detection and segmentation, and used default 3D models without ICP refinement. The architecture consisted of a single model for all objects within each dataset, combining object detection and pose regression. Author: Jingyang Liu. |
Computer specifications | RTX3090 |