Submission name | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Submission time (UTC) | Feb. 28, 2024, 11:40 a.m. | ||||||||||
User | nvnguyen | ||||||||||
Task | Model-based 6D localization of unseen objects | ||||||||||
Dataset | LM-O | ||||||||||
Description | |||||||||||
Evaluation scores |
|
User | nvnguyen |
---|---|
Publication | https://arxiv.org/abs/2311.14155 |
Implementation | https://github.com/nv-nguyen/gigapose |
Training image modalities | RGB |
Test image modalities | RGB |
Description | GigaPose (Nguyen et al., CVPR 2024) is a "hybrid" template-patch correspondence approach to estimate 6D pose of novel objects in RGB images: GigaPose first uses 162 templates, rendered images of the CAD models, to recover the out-of-plane rotation (2DoF) and then uses patch correspondences to estimate the remaining 4DoF. |
Computer specifications | V100 |