Submission name | 3rd stage | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submission time (UTC) | Sept. 27, 2023, 4:49 p.m. | ||||||||||||||||||||||||||
User | felix.stillger | ||||||||||||||||||||||||||
Task | Model-based 2D segmentation of unseen objects | ||||||||||||||||||||||||||
Dataset | TUD-L | ||||||||||||||||||||||||||
Description | |||||||||||||||||||||||||||
Evaluation scores |
|
User | felix.stillger |
---|---|
Publication | |
Implementation | |
Training image modalities | RGB |
Test image modalities | RGB |
Description | Training: There is no training step. Onboarding: For each object, 43 random pre-rendered images from the "train_pbr" dataset are selected. The masks of these objects are then extracted and encoded using CLIP. This data is input into a simple expert binary classifier, trained for each object. Test: During testing, Fastsam-s extracts masks from a test image, and the object's ID is determined by the expert binary classifiers. |
Computer specifications | RTX 3090, AMD Ryzen 9 3900X 12-Core Processor |