| Submission name | ORSP-NET_Segm | ||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Submission time (UTC) | Oct. 1, 2025, 3:27 p.m. | ||||||||||||||||||||||||||
| User | ISRI_SKKU | ||||||||||||||||||||||||||
| Task | Model-based 2D segmentation of seen objects | ||||||||||||||||||||||||||
| Dataset | LM-O | ||||||||||||||||||||||||||
| Description | |||||||||||||||||||||||||||
| Evaluation scores |
|
| User | ISRI_SKKU |
|---|---|
| Publication | |
| Implementation | |
| Training image modalities | RGB-D |
| Test image modalities | RGB-D |
| Description | Submitted to: BOP Challenge 2025 Training data: provided PBR + custom synthetic Notes: Our cascaded YOLO–YOLACT framework integrates additional networks to maximize recall and improve precision. A Box Reorganization algorithm redefines precise RoIs, followed by an Image Classifier and Feature-Level Refinement to enhance class accuracy. Scene-Level Fusion combines class, score, and box information, yielding robust segmentation of small and heavily occluded objects. |
| Computer specifications | CPU: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz; RAM: 64GB; GPU: NVIDIA TITAN X (Pascal) |