Submission: ZebraPose-SAT/ITODD

Download submission
Submission name
Submission time (UTC) Oct. 14, 2022, 3:19 p.m.
User zebrapose
Task Model-based 6D localization of seen objects
Dataset ITODD
Training model type Default
Training image type Synthetic (only PBR images provided for BOP Challenge 2020 were used)
Description
Evaluation scores
AR:0.379
AR_MSPD:0.538
AR_MSSD:0.318
AR_VSD:0.282
average_time_per_image:-1.000

Method: ZebraPose-SAT

User zebrapose
Publication ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation, CVPR2022
Implementation https://github.com/suyz526/ZebraPose
Training image modalities RGB
Test image modalities RGB
Description

Based on the paper "ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation", CVPR 2022.

  • Training images: PBR image + Real images (if available)

  • Setting: One network per object was trained

  • 2D Bounding Box: FCOS detection results provided by CDPNv2

  • Modifications to the original ZebraPose paper:

    1. Added Symmetry-Aware Training (SAT). The network and loss functions are not changed. There will be a new ground truth for the sym. objects, details can be found in the Github Repository. Special thanks to Yongliang Lin for his contribution.
  • The reported inference time included 2D detection time.

List of contributors:

  • German Research Center for Artificial Intelligence (DFKI), Augmented Vision department:

Yongzhi Su, Praveen Nathan, Torben Fetzer, Jason Rambach, Didier Stricker

  • Technical University Munich (TUM), CAMPAR:

Mahdi Saleh, Yan Di, Nassir Navab, Benjamin Busam, Federico Tombari

  • Zhejiang University (ZJU):

Yongliang Lin, Yu Zhang

Computer specifications Intel(R) Xeon(R) E-2146G CPU @ 3.50GHz, Nvidia RTX2080Ti