User | zyMeteroid |
---|---|
Publication | Not yet |
Implementation | Pytorch, code can be found at https://github.com/shanice-l/gdrnpp_bop2022 |
Training image modalities | RGB |
Test image modalities | RGB-D |
Description | Submitted to: BOP Challenge 2023 Training data: real + provided PBR Used 3D models: Reconstructed for T-LESS, default for other datasets Notes: Authors: Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen Fu, Jiwen Tang, Xiquan Liang, Jingyi Tang, Xiaotian Cheng, Yukang Zhang, Gu Wang, and Xiangyang Ji. Based on GDRNPP-PBRReal-RGB-SModel, we utilize depth information to further refine the estimated pose. We implement a fast refinement module without learned parameters. We compare the rendered object depth and the observed depth to refine translation. |
Computer specifications | GPU RTX 3090; CPU AMD EPYC 7H12 64-Core Processor. |
Date | Submission name | Dataset | ||
---|---|---|---|---|
2022-10-12 09:48 | - | T-LESS | ||
2022-10-12 09:49 | - | TUD-L | ||
2022-10-12 09:49 | - | LM-O | ||
2022-10-12 09:50 | - | IC-BIN | ||
2022-10-12 09:50 | - | YCB-V | ||
2022-10-13 02:26 | - | HB | ||
2022-10-14 08:19 | - | ITODD |