User | zyMeteroid |
---|---|
Publication | Not yet |
Implementation | Pytorch, code can be found at https://github.com/shanice-l/gdrnpp_bop2022 |
Training image modalities | RGB |
Test image modalities | RGB |
Description | Submitted to: BOP Challenge 2023 Training data: real + provided PBR Used 3D models: Reconstructed for T-LESS, default for other datasets Notes: Authors: Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen Fu, Jiwen Tang, Xiquan Liang, Jingyi Tang, Xiaotian Cheng, Yukang Zhang, Gu Wang, and Xiangyang Ji (Tsinghua University). In the PBRReal-RGB-MModel setting, for LMO, HB, ICBIN and ITODD datasets, we only use the provided synthetic training data (PBR) in training. While for YCBV, TUDL, TLESS, we use the provided real data and synthetic data (PBR) in training. For detection, we adopted yolox as the detection method. Otherwise, stronger data augmentation and ranger optimizer has been used. For pose estimation, the difference between our GDRNPP and the CVPR-version GDR-Net mainly includes:
|
Computer specifications | GPU RTX 3090; CPU AMD EPYC 7H12 64-Core Processor. |
Date | Submission name | Dataset | ||
---|---|---|---|---|
2022-10-06 12:36 | - | LM-O | ||
2022-10-06 12:36 | - | IC-BIN | ||
2022-10-06 12:38 | - | HB | ||
2022-10-06 12:47 | - | TUD-L | ||
2022-10-08 05:00 | GDRNPP-PBRReal-RGB-MModel-YCBV | YCB-V | ||
2022-10-10 10:58 | gdrnpp tless | T-LESS | ||
2022-10-13 06:33 | itodd_pbr_rgb_mmodel | ITODD |